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ABSTRACT 

The mechanical and rheological properties of an MR fluid depend on the induced 

microstructure of the imbedded ferrous particles.  When subject to an externally applied 

magnetic field these particles magnetize and align themselves in chains parallel to the 

applied field.  The microstructure of these chains is a function of several parameters 

including particle size, applied magnetic field strength, and viscosity and velocity of the 

surrounding fluid.  This thesis will create a model from a first principle approach to 

accurately predict the microstructure in a variety of different situations.  The model 

investigated assumes the particles become magnetic dipoles upon the application of the 

magnetic field and that particle interaction is due solely to dipole-dipole interaction.  Due 

to the inherently small size of the particles, drag is modeled using Stokes’ drag.  This 

mathematical model will be used to create a computer simulation to visualize and analyze 

the subsequent transient microstructures formed.  The model will assume a constant 

magnetic field applied (i.e., no spatial or time gradients) and that the effects of this field 

are felt instantaneously. 
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I. INTRODUCTION  

A. CONTROLLABLE FLUIDS 

Magnetorheological (MR) and electrorheological (ER) fluids are a class of 

“smart” materials that are characterized by their ability to reversibly transform from 

liquid state to a Bingham solid.  They are fluids that have either magnetically permeable 

(or electrically conductive) microscopic particles suspended in them.  The transformation 

from liquid state to Bingham solid occurs by the application of a magnetic (or electric) 

field to the fluid.  This magnetic (or electric) field causes the suspended particles to align 

in chains along the field lines in a manner to reduce the overall energy of the field.  The 

existence of these chains changes many bulk properties of the fluid.  Of practical interest 

is the change in viscosity which causes the fluid to behave like a Bingham solid. 

The Bingham model used for modeling MR fluids relates the total shear stress τ  

to the shear rate 
.
γ  and H (magnitude of applied magnetic field) according to the equation 

. .
( ) sgn( )y Hτ τ η γ γ⎡ ⎤= +⎢ ⎥⎣ ⎦

,  

where ( )y Hτ  is a yield stress that is a function of the applied magnetic field and η  is the 

composite bulk viscosity of the fluid [1].  This equation is phenomenological in nature 

where the values in the equation are determined experimentally instead of being deduced 

from a first principle approach. 

Recently it has been found that a more detailed approach to predicting the 

behavior of MR fluids has become necessary due to the limitations of the above approach 

[1].  First, the Bingham model is a macro scale approach (the fluid and particles are 

treated as a single continuum instead of a composite system) with no differentiation with 

particle level.  The coupling between mechanical behavior and the magnetic field takes 

place at the particle level and is governed by first principles (conservation of momentum, 

Maxwell’s Laws, etc.).  The Bingham model then is limited to a narrow range of 
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applicability commensurate with the experimental data.  Second, the Bingham model 

tends to be inaccurate at low value of stress.  In current applications where MR devices 

are used as feedback controls, low value stresses are important and the above model 

proves unsatisfactory.  Third, the Bingham model is only applicable to 1-D simple shear 

flows with a transverse magnetic field applied.  This is inadequate for multi-degree of 

freedom MR devices that are currently being designed.  These reasons encourage a 

different model to be developed that is based on first principles.   

B. INDUSTRIAL APPLICATIONS 

The American inventor, Willis Winslow, was the first to recognize how to create 

a smart fluid using these principles [2, 3].  He did much of the initial pioneering work on 

ER fluids in the 1940s.  Later, Jacob Rabinow investigated the same phenomenon using a 

magnetic field for use in a magnetic field clutch [2] and is considered the first to develop 

MR fluids.  Although their works were conducted over half a century ago, it has only 

been recently that the use of these smart fluids has become more common in industrial 

applications.  This is due primarily to the stability and durability requirements of modern 

designs [3]. 

Today the uses for these smart, controllable fluids are numerous and varied.  One 

primary use is in hydraulic dampers and brakes.  Because of the ability to rapidly change 

the working fluid viscosity, one has the ability to change the damping coefficient in 

dampers to give much better dynamic response and control.  Other applications include 

better feedback to control items such as joysticks, responsive personnel armor, and MR 

polishing machines [4]. 
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C. TYPICAL MR FLUID ARRANGEMENT 

A typical arrangement for an industrial application of a MR fluid is shown below. 

 

Figure 1.   MR Fluid Device Arrangement 

The MR fluid, consisting of a carrier fluid (usually a silicone oil) and the 

suspended particles (typically fine ferrous particles), is sandwiched in a small gap 

between two electromagnets.  These magnets, when energized, create a magnetic field 

perpendicular to the flow of the MR fluid which causes the imbedded particles to form 

chains parallel to the applied field.  The dynamic response of these particles in both a 

static fluid and a moving fluid is investigated in this thesis. 

Electromagnet 

Electromagnet 

MR Fluid 

Magnetic  
Field Lines 
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II. MAGNETIC FORCE  

A. DIPOLE MODEL 

When the magnetic field is applied to the MR fluid, the ferromagnetic particles 

become magnetized and interact with the field and with each other.  The exact solution to 

these interactions is difficult (if not impossible) and involves the integration of Maxwell’s 

stress tensors across the entire volume of the magnetized solution.  Instead, some 

simplifying assumptions need to be made in order to allow an easily calculable analytical 

solution without sacrificing accuracy. 

The first assumption to be made is to use a dipole model for the magnetized 

particles.  This assumes that the particles are dumbbell in shape, with length L. One end 

contains the positive (North) pole and the other contains the negative (South) pole of the 

magnet as shown in Figure 2.  The magnitude of the pole strength is denoted by q and 

arises because the applied magnetic field magnetizes the particle. 

- +

L

 

Figure 2.   Dumbbell Shape 

When the above dumbbell is placed in a magnetic field H, it experiences a torque 

about its center as described by the formula sin( )LqHτ θ= , where θ is the angle between 

the magnetic field and dumbbell.  The quantity L*q is given a special name, the magnetic 

moment, and is denoted by m.  The model used in this thesis uses the dipole model and is 

defined by determining the value of m in the limit where L goes to zero but the torque 

remains finite.  This is the case of magnetic spheres which are used in most MR 

applications. 
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The magnitude of the dipole moment determines the interaction of the particles 

with the external magnetic field and the interaction of the particles with each other.  It is a 

function of the magnitude of the applied external field (H with units Amp/m), the volume 

of the particles, and the magnetic permeability of both the particles and the surrounding 

fluid [5].  Specifically it is given by the relation 

3(4 )
2

p f
loc

p f

m a H
μ μ

π
μ μ

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

       (1) 

where a = radius of the particle (meters), μp = magnetic permeability of the particle 

(henry/meter), μf  = magnetic permeability of the fluid, and Hloc = magnetic field at dipole 

location (amp/meter). 

Several assumptions need to be made when using the above formula.  The 

presence of a dipole alters the magnetic field in its vicinity (this is what causes particles 

to interact with each other) and this implies that the value of Hloc needs to be calculated at 

every point.  However, this variation is assumed to be negligible when calculating the 

magnetic dipole since the external fields applied are relatively large (on the order of 200 

kA/m) and the variations caused by the dipoles are several orders of magnitude smaller.  

Therefore Hloc is assumed to be equal to the applied magnetic field.  The second 

assumption concerns the value of μp.  Because the particles are ferrous, μp is not a 

constant but varies with the applied magnetic field.  However since the range of the 

applied field is small, often a fixed value, an average value of μp is used based on the 

values of the applied field. 

B. FORCE ON A DIPOLE 

The force on a dipole in a magnetic field is given by the product of the dipole 

moment and the gradient of the magnetic field as given by the expression  

r
HF m
r

∂
=

∂          (2) 
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where rF is the force in some arbitrary direction r and H
r

∂
∂

is the spatial derivative in the 

r direction.  One method that presents itself in determining the forces is to simply 

calculate the magnetic field at every point.  Theoretically this could be done by 

calculating the external applied field and modifying it by the perturbations caused by the 

presence of the dipoles.  Since the location of the dipoles constantly changes, this 

calculation would have to be performed at every time step.  Using this calculation (which 

would have to be performed numerically) the gradient at every point could be calculated 

and then the force on every particle could be determined.  In reality this calculation is 

difficult to perform, requires specific algorithms for determining the field and the 

gradients, and requires massive computing power.  A more simplistic approach was used 

for this model. 

The first assumption for a more simplistic approach is that the applied magnetic 

field is uniform.  This assumption is valid since the applied magnetic field is enacted 

rapidly (assumed instantaneous), does not vary with time, and the fluid gap is very small 

compared to the surface area over which the field is enacted.  Since the magnetic field is 

assumed uniform in space and time there is no gradient and the particles experience no 

net force due to the external field.  The only magnetic force the particles experience is 

due to their mutual interactions. 

Consider two magnetic dipoles of identical strength at arbitrary positions ir and 

jr .  A magnetic field 0H  is applied parallel to the z axis.  The force between the two 

dipoles is given by 

( ) ( )
2

2
4

3
1 3cos sin 2f

ij ij r ij
ij

m
f e e

r θ

μ
θ θ⎡ ⎤= − −⎣ ⎦      (3) 

where ijf is the force on particle i from particle j, ij i jr r r= − , ijθ is the angle from the z 

axis and ijr , re  is a unit vector parallel to ijr , and eθ is a unit vector parallel to 

( )0r re e H× ×  [6].  This is shown in the below figure. 
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Figure 3.   Relationship Between Two Particles 

This equation models the interaction between dipoles and it is useful to examine 

this equation quantitatively to obtain a feel for the dynamics of the particles.  By 

combining equations (1) and (2), it becomes apparent that the interaction force is 

proportional to the square of the applied field, proportional to the square of the particles 

volume, and the direction of the force is a function of the relative location of the two 

particles.  This last item is what causes the particles to form stable chains when the 

magnetic field is applied.  Examine only the radial term in equation (3).  If ijθ is less than 

~54.6 degrees, the particles tend to attract.  Otherwise they tend to repel.  

It is more useful to transform equation (3) into Cartesian coordinates.  Using the 

same x, y, and z directions as shown in Figure (2) and defining 23 fQ m μ= , the x, y, and z 

components are given as 

2

4 2

5
1 ij ij

ijx
ijij ij

z xQf
rr r

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
       (4) 

0H

j 

i 

z

y

x 

ijθ

ijr

re

eθ

ijx

ijy

ijz
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2

4 2

5
1 ij ij

ijy
ij ij ij

z yQf
r r r

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
       (5) 

2

4 2

5
3 ij ij

ijz
ij ij ij

z zQf
r r r

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
       (6) 

  

where fijx is the x component of fij, fijy is the y component of fij, and fijz is the z component 

of fij.  The derivations for the above equations are attached in Appendix A. 

 In a suspension of N particles each with an assumed induced magnetic 

dipole moment of m, the total magnetic force due to dipole interaction on a particle i is 

the sum of the contributions of all of the other particles in the suspension.  In algebraic 

form 

 

N

Mix ijx
i j

F f
≠

=∑        (7) 

 

N

Miy ijy
i j

F f
≠

=∑        (8) 

 

N

Miz ijz
i j

F f
≠

=∑        (9) 

where MixF is the total magnetic force on particle i in the x direction, MiyF is the total 

magnetic force on particle i in the y direction, and MizF is the total magnetic force on 

particle i in the z direction.  To determine the dynamic behavior of the particles in the 

fluid, these equation are calculated at every time step, the deviation in the current position 

of the particles are calculated, the values of the forces are recomputed at the next time 

step based on the particles’ new position, and the process is repeated until the end of the 

computational time. 
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III. OTHER FORCES 

A. DRAG FORCE 

The drag force on a spherical particle moving in a viscous fluid is a function of 

the pressure difference across the sphere (form drag) and the surface shear stress (viscous 

drag).  In general this expression can be complicated to solve.  In the specific case of the 

small particles used in MR fluids a number of simplifying assumptions can be made to 

more easily determine this drag force.  The flow can be assumed to be laminar due to the 

small clearances between the electromagnets which the fluid flows between and the small 

velocities analyzed in this thesis.  Another simplifying case arises due to the small 

particle size (~micro meter) which implies that the Reynolds number based on diameter 

(ReD) is less than 1.  Both of these assumptions allow the viscous drag force to be 

modeled by the well understood Stokes’ drag which is given by 

6r
drF a
dt

πη=         (10) 

where rF  is the drag force in the r direction, η  is the viscosity of the fluid and a is the 

radius of the particle.  

B. GRAVITY 

The force of gravity is neglected in this model based on the fact that the 

gravitational force that would tend to make the particles settle is a much weaker force 

than the magnetic force that acts between the dipoles.  This is obviously not true when no 

magnetic field is applied, but the gravitational settling is ignored by assuming that the 

suspension is thoroughly mixed before the application of the field and that the particles 

are randomly distributed in the carrier fluid. 
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C. BROWNIAN MOTION 

Brownian motion is characterized by the random walk of particles in a fluid due 

to the bombardment of molecules.  In determining if Brownian motion should be 

considered in any model of MR fluids, this effect should be compared to other effects 

which determine the dynamic behavior of the particles.  When there is no applied 

magnetic field this is not the case, however by assuming that the fluid is mixed 

immediately before the field is applied would negate any effects of Brownian motion.  

Once the field is applied the relative effect of Brownian motion compared with the 

magnetic forces can be determined by analyzing the coupling constant λ which is defined 

as the ratio of the interaction energy of two dipoles in contact and the thermal energy [6].  

Specifically  

3 2 2
0

9
d

b b

E a H
k T k T

πμ χλ = =        (11) 

where 0μ is the magnetic permeability in a vacuum, a is the particle radius, H is the 

magnetic field, χ is the magnetic susceptibility of the particle, bk is the Boltzmann 

constant and T is the absolute temperature.  In all cases modeled in this thesis 1λ  and 

Brownian motion is ignored. 

D. REPULSIVE FORCES 

The particles themselves and any walls that physically constrain the MR fluid are 

modeled as hard surfaces.  Therefore a fictitious repulsive force must be modeled to 

ensure that a particle in physical contact with either a wall or another particle behaves as 

hard.  The characteristics of this force are such that when two particles touch (the 

distance between two dipoles is 2a apart) the repulsive force exactly balances the 

attractive force between the dipoles, and when the distance between the dipoles is greater 

than 2a the force is negligibly small.  The proposed form of this force is given below 

2 1
2

, 1

ijr
K

a
rep ij rf K e e

⎡ ⎤
−⎢ ⎥

⎣ ⎦=        (12) 



 13

where K1 and K2 are constants to be determined.  The exponential term was chosen to 

give a function that rapidly decays as rij increases and is a commonly used mathematical 

model for these types of interactions [7].  

To determine K1, apply the condition that when rij is equal to 2a then the repulsive 

force must equal the attractive force between the dipoles.  From equation (3) the dipoles 

attract when ijθ is less than ~54.6 degrees and the attractive force also causes ijθ to tend to 

zero.  This is what causes the particles to align in chains that characterize the MR fluid.  

Assume that the particles will touch when ijθ is small.  From Figure 2, this implies that 

ijx and ijy  are negligibly small.  Appling this condition to equations (4-6) gives 

 0ijxf = , 0ijyf = , and 
2

4 2

5
3 ij ij

ijz
ij ij ij

z zQf
r r r

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. 

When the particles are touching 2ij ijz r a= = which, when combined with the 

above equation, gives 

 
( )4

2
2

ijz
Qf
a

= − . 

Combining this result with equation (9) gives a value for 1 48
QK
a

= . 

The constant K2 is determined by a much less rigorous means.  It must be negative 

to give a decaying characteristic and its magnitude is selected by a trial and error 

approach.  On one hand a high magnitude gives a steeper decay which is advantageous 

since this more closely approximates reality.  However, if the value is too large, the 

repulsive term can become extremely large for small distances and leads to numerical 

instabilities.  A value of 2 12K = −  was chosen as a balance between these two competing 

factors based on numerical experiments.  This gives a steep decay while allowing a more 

manageable time step. 
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Using the values of K1 and K2 and transforming equation (9) into Cartesian 

coordinates gives the following expressions for the repulsive force on a particle i from 

particle j in the x, y, and z directions as 

12 1
2

, , 48

ijr
ija

rep ij x
ij

xQf e
ra

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

      (13) 

12 1
2

, , 48

ijr
a ij

rep ij y
ij

yQf e
a r

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

      (14) 

12 1
2

, , 48

ijr
a ij

rep ij z
ij

zQf e
a r

⎡ ⎤
− −⎢ ⎥

⎣ ⎦
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

      (15) 

For the physical interaction with the walls of the container, a similar approach 

was taken, and the equation developed for the interaction of a particle with the 

floor/ceiling is given as 

( )
3030 .5 22

48

ii
H zz

aa
Wiz

Qf e e
a

⎡ ⎤−⎛ ⎞ −− − ⎢ ⎥⎜ ⎟
⎝ ⎠ ⎣ ⎦

⎡ ⎤
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

     (16) 

where Wizf is the force on particle i from the wall in the z direction, iz  is the absolute 

distance from the bottom boundary to particle i in the z direction, and H is the total height 

of the volume (not to be confused with the use of H elsewhere as the magnetic field 

strength).  Equations identical to (16) are used for the horizontal boundaries with the 

substitutions for the particles x and y positions (instead of iz ) and the length and width of 

the containment area (instead of H). 

E. INTERACTION WITH ELECTROMAGNET 

Up to this point the discussion of the physics of the interactions of the particles in 

a MR fluid is exactly the same as if it was an ER fluid (replace the electromagnet with 
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charged parallel plate conductors and replace some of the magnetic constants with their 

electrical equivalents).  A primary difference between the two arises in the physics of the 

interaction between the electromagnet (MR) and the interaction with the charged 

conducting plate (ER).  In the latter case, the charged plates induce an electric dipole 

(exactly analogous to the electromagnets inducing a magnetic dipole), but the electric 

dipoles interact with the plates in an easily understood manner.  The presence of the 

electric dipoles themselves will induce a current distribution on the plates and then these 

dipoles are electrically attracted to the plates because of this current distribution.  A well 

documented manner to calculate this interaction is by the method of image charge [5].  

Basically the interaction of a dipole that is a distance L from the plate is identical to 

assuming there is an infinite number of equal dipoles on the other side of the plate at 

distances nL where n=1,2,3….  Therefore an electric dipole will interact with the 

conducting plate, specifically will be attracted to the plate and attach itself to the plate.  If 

there are multiple dipoles, they will form chains, and the chains will anchor themselves to 

the plate and behave as if the chain was infinitely long.  This is what allows an ER to 

have a shear stress; the chains are anchored to the plate. 

There is no analogy in the MR case.  There is no such thing as a magnetic current 

produced at the boundary of the electromagnet that would allow the use of the dipole 

image method to determine the interaction of the chain with the magnet [6].  Another way 

to look at this is to consider a single magnetic dipole between the magnets.  Assuming a 

constant magnetic field, the dipole would not be attracted to either of the magnets.  There 

seems to be nothing to lock the chain in place and therefore an MR fluid would not be 

able to have a shear stress.  Experimentally, this is not true.  The chains do become 

locked. 

There are two reasonable theories as to how this locking occurs.  The first is to 

question the assumption that the field is uniform.  Away from the edges of the magnets, 

due to the small gap between the magnets, it is safe to assume a uniform field.  When the 

magnets are close together the field lines away from the edges do not spread out and 

consequently there is no gradient.  However, at the edges of the magnets, this is not true.  

The fields bulge outward and tend to wrap around, causing large gradients.  One proposal 
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is that away from the edges of the magnets, the chains are free to move (are not locked to the 

magnet), but as the bulk fluid flow sweeps them toward the edge of the magnet, they become 

locked in this area of high field gradients and effectively form a lattice type wall.  Other 

chains being swept along will then build up behind this lattice wall. 

Another theory approach is to again to question the uniformity of the field, this time 

at the fluid/magnet interface.  To explain this effect requires the use of Maxwell’s laws.  The 

equation of specific use is  

0B∇ =i          (17) 

where B is magnetic flux density (Tesla).  The relationship between H and B is given by 

B Hμ=          (18) 

where μ  is the magnetic permeability of the substance through which H exists.  Using 

equations (17) to solve for the normal component of B across the discontinuity between the 

magnet and the fluid (there are no tangential components) implies 

 1 2 2 1 1( ) 0n H Hμ μ− =i  or 2 2 1 1H Hμ μ=  

where the subscripts refer to the magnetic permeability and magnetic field of the magnet and 

fluid respectively [8].  This shows at the interface between the magnet and fluid there is a 

jump discontinuity in the magnetic field (assuming that the magnetic permeability of the two 

materials are not equal). 

The model presented here assumes the second explanation for a physical interaction 

between the magnet and dipoles.  The exact force caused by this gradient is unknown, but it 

is assumed that it is incredibly short ranged, and that causes a force of attraction such that, 

when multiplied by the frictional coefficient between the particle and magnet, leads to a 

frictional force that is substantially larger in magnitude as compared to the force that tends to 

sweep the particle along.  This assumption is valid since the force tending to sweep the 

particle along with the flow is a function the flow velocity at the particle’s location.  Since 

the particle is small (~5 microns) and resides at the interface, the flow velocity is 

approximately zero (no slip condition).  In other word, a particle that happens to touch the 

magnet becomes locked in place, but particles in the stream, away from the wall, do not 

experience this force. 
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IV. MODEL FOR INTERACTION 

A. NEWTON’S SECOND LAW 

The description of a particle’s motion in a MR fluid can be determined using 

Newton’s second law of motion.  In formulating a model for the motion of an arbitrary 

particle i apply this law in the x direction as follows 

2

2
i

ix
d xF m
dt

=∑         (19) 

where the left hand side of the equation is the sum of all of the forces on particle i in the x 

direction and m is the particle’s mass (not dipole moment).  The left hand side includes 

the dipole interaction force, drag force, and repulsive forces due to contact with other 

particles and the walls.  Combining equations (7), (10), (13) and (16) gives the following 

second order differential equation to solve 

 
2

2
i i

ix
d x dxm D F
dt dt

+ =        (20) 

where 6D aπη= , and , ,

N

ix Mix rep ij x Wix
i j

F F f f
≠

= + +∑ . 

Equation (20) can be solved numerically, in its current form, using a range of 

techniques (for instance a Runge-Kutta algorithm).  To make the computations more 

simple, integrate equation (20) over a sufficiently small time step τ  such that the term on 

the right hand side can be assumed constant.  This gives an equation for the change in the 

position of the particle in the x direction during this time step τ  as shown below 

 0 1
D

ix mF V mx e
D D

ττ −⎡ ⎤
Δ = + −⎢ ⎥

⎣ ⎦
      (21) 
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where 0V  is the velocity of the particle in the x direction at the beginning of the time step.  

This equations shows that if τ  is chosen such that it is several orders of magnitude less 

than m
D  then the second term on the right hand side can be ignored and therefore  

ixFx
D
τ

Δ =          (22) 

and similarly 

iyF
y

D
τ

Δ =          (23) 

izFz
D
τ

Δ =          (24) 

for the y and z components.  For the MR fluids analyzed here a typical value of m
D  is 

about 5E-7 sec-1 which makes the time step on the order of 1E-9 sec.  In reality this will 

be the upper limit on the time step. Initially a much smaller time step will be used in the 

computer simulation.  This is due to how the program randomly establishes the initial 

positions of the particles and that they tend to overlap.  A smaller time step is required to 

“push” the particles off of each other and the wall without destabilizing the computations 

with excessively large positional changes at each time step. 

B. STATIC FLUID MODEL 

A computational algorithm was written to determine the dynamic motion of the 

particles in a MR fluid.  The program takes user inputs for the length, width and height of 

the MR fluid area, the number of particles to simulate, the magnitude of the applied 

magnetic field (program assumes the direction is in the negative z direction), and the 

number of time steps to perform the algorithm.  The program then randomly distributes 

the particles inside of the fluid area.  Using this distribution the initial spacing between all 

of the particles is computed (the values of ijx , ijy , ijz  and ijr ).  Then the value of the dipole 

strength and drag coefficient is computed.  Using the spacing between particles and the 
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value of the dipole moments, ixF , iyF , and izF  are calculated for every particle.  If the 

particle is near the upper or lower wall (a distance between a and 1.3a) the forces are 

assumed zero for the reason of the interaction with the magnet/fluid boundary discussed 

in Chapter III.  Then the forces are computed using equations (20).  A time step is 

computed based on the value of m
D as described in the previous section.  The updated 

position of every particle is then calculated using equations (22-24) and this new position 

is stored and plotted graphically if desired.  This process is repeated for every time step 

using the updated positions from the previous time step.  

As discussed above, a minor issue arises in the initial random spacing, especially 

at higher particle densities.  Sometimes the particles are randomly placed such that two or 

more particles are spaced where the distance between them is less than their diameter 

length apart or such that the spacing between a particle and a wall is less than the 

particles radius length apart.  This is not physically possible since the particles and the 

wall are hard.  To overcome this, the time step chosen for the first 10 time steps is several 

orders of magnitude less than what is used for the remainder of the computation.  This 

allows the repulsive force terms to “push” the particles away from each other and the 

wall without creating an abnormally large positional change that would eject them from 

the MR fluid domain.  A copy of the computer code used is attached in Appendix B with 

a more detailed discussion as to the inner workings. 

C. DYNAMIC FLUID MODEL 

The programs constructed to compute the dynamic motion of particles in a 

dynamic fluid are very similar to the one for the static case with a few alterations.  Two 

separate programs were created, one for pressure driven flow and the other for shear 

driven flow (these were the only two specific flow types analyzed). 

In the pressure driven case (parallel flow with a parabolic velocity distribution) it 

is assumed that the flow velocity is in the x direction, does not vary in the x and y 

directions and varies with a parabolic distribution in the z direction.  The user inputs the 

meanline (maximum) flow and the program computes the value of the velocity at every 
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point in the MR fluid.  Using this velocity distribution, another term is added to the right 

hand side of equation (20) to account for the drag force due to the fluid flow.  Equation 

(20) now becomes 

2

2
i i

ix i
d x dxm D F DU
dt dt

+ = +       (25) 

where Ui is the flow velocity at the position of particle i.  Note that since the flow is only 

in the x direction no modification is required for the equations of motion in the y and z 

directions.  Applying the same arguments above that allowed for the inertial term to be 

ignored allows for the computation of the change in the position of the particle in the 

same manner as for the static case. 

The program for the shear driven flow (Couette flow) is the same as for the 

pressure driven flow, but here the user specifies the flow velocity at the upper plate.  The 

program then calculates the velocity at all other points in the fluid and simulates the 

particle motion exactly the same as for the pressure driven flow. 
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V. SIMULATION RESULTS 

A. STATIC FLUID SIMULATION 

The first qualitative analysis to examine is the effect on time response of the fluid 

as a function of particle density.  The results shown are for three simulations where all 

parameters are held constant with the exception of particle density.  The various 

parameters used are shown in the below table.  In all cases the size of the rectangular 

volume is 100 X 100 X 100 micrometers with hard walls bounding the area.  The 

magnetic field is applied in the negative z direction.  The value of m
D  used to calculate 

the time step has a value of 1.744E-7 based on the below parameters. 

 

 Number of 
Particles Fluid Viscosity Fluid 

Permeability 
Particle 

Permeability 
Applied 

Magnetic Field 

Simulation 1 40 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 200 kA/m 

Simulation 2 70 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 200 kA/m 

Simulation 3 100 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 200 kA/m 

Table 1.   Parameters for Simulations 1, 2 and 3 

The simulations were conducted out for 100,000 time steps which equates to a 

simulation time of 1.7 milliseconds.  The figures below show the particle microstructures 

at various times for the above simulations in both a 3-D and top down view. 
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Figure 4.   Simulation 1, Initial Particle Distribution, 3-D View 
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Figure 5.   Simulation 1, Initial Particle Distribution, Top Down View 
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Figure 6.   Simulation 1, Time = 0.16 milliseconds, 3-D View 
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Figure 7.   Simulation 1, Time = 0.16 milliseconds, Top Down View 
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Figure 8.   Simulation 1, Time = 1.7 milliseconds, 3-D View 
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Figure 9.   Simulation 1, Time = 1.7 milliseconds, Top Down View 
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Figure 10.   Simulation 2, Initial Particle Distribution, 3-D View 
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Figure 11.   Simulation 2, Initial Particle Distribution, Top Down View 
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Figure 12.   Simulation 2, Time = 0.16 milliseconds, 3-D View 
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Figure 13.   Simulation 2, Time = 0.16 milliseconds, Top Down View 
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Figure 14.   Simulation 2, Time = 0.86 milliseconds, 3-D View 
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Figure 15.   Simulation 2, Time = 0.86 milliseconds, Top Down View 
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Figure 16.   Simulation 2, Time = 1.7 milliseconds, 3-D View 
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Figure 17.   Simulation 2, Time = 1.7 milliseconds, Top Down View 
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Figure 18.   Simulation 3, Initial Particle Distribution, 3-D View 
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Figure 19.   Simulation 3, Initial Particle Distribution, Top Down View 
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Figure 20.   Simulation 3, Time = 0.16 milliseconds, 3-D View 
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Figure 21.   Simulation 3, Time = 0.16 milliseconds, Top Down View 



 31

0
0.2

0.4
0.6

0.8
1

x 10-4

0
0.2

0.4
0.6

0.8
1

x 10-4

0

0.2

0.4

0.6

0.8

1

x 10-4

 
Figure 22.   Simulation 3, Time = 0.86 milliseconds, 3-D View 
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Figure 23.   Simulation 3, Time = 0.86 milliseconds, Top Down View 
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Figure 24.   Simulation 3, Time = 1.7 milliseconds, 3-D View 
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Figure 25.   Simulation 3, Time = 1.7 milliseconds, Top Down View 
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Qualitatively, from the above figures, it is apparent that the speed at which the 

particles form chains is a function of the density of the particles in the fluid.  Examining 

the two extreme cases (Simulations 1 and 3), much longer structures with fewer smaller 

structures are evident in Figure 20 than exist in Figure 6.  Therefore, this model 

demonstrates the experimentally verified fact that particle density is a factor in response 

time of the MR fluid [3].  

The second qualitative analysis to examine is the effect on time response of the 

fluid as a function of applied magnetic field strength.  The results shown are for three 

simulations where all parameters are held constant with the exception of the magnetic 

field.  The various parameters used are shown in Table 2.  In all cases the size of the 

rectangular volume is 100 X 100 X 100 micrometers with hard walls bounding the area.  

The magnetic field is applied in the negative z direction.  The value of m
D  used to 

calculate the time step has a value of 1.744E-7 based on the below parameters. 

 

 Number of 
Particles 

Fluid 
Viscosity 

Fluid 
Permeability 

Particle 
Permeability 

Applied 
Magnetic 

Field 

Simulation 1 70 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 150 kA/m 

Simulation 2 70 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 200 kA/m 

Simulation 3 70 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 250 kA/m 

Table 2.   Parameters for Simulations 4, 5 and 6 

 



 34

0
0.2

0.4
0.6

0.8
1

x 10
-4

0
0.2

0.4
0.6

0.8
1

x 10
-4

0

0.2

0.4

0.6

0.8

1

x 10
-4

 
Figure 26.   Simulation 4, Initial Particle Distribution, 3-D View 
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Figure 27.   Simulation 4, Initial Particle Distribution, Top Down View 
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Figure 28.   Simulation 4, Time = 0.86 milliseconds, 3-D View 
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Figure 29.   Simulation 4, Time = 0.86 milliseconds, Top Down View 
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Figure 30.   Simulation 4, Time = 1.7 milliseconds, 3-D View 
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Figure 31.   Simulation 4, Time = 1.7 milliseconds, Top Down View 
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Figure 32.   Simulation 5, Initial Particle Distribution, 3-D View 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10-4

 
Figure 33.   Simulation 5, Initial Particle Distribution, Top Down View 
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Figure 34.   Simulation 5, Time = 0.86 milliseconds, 3-D View 
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Figure 35.   Simulation 5, Time = 0.86 milliseconds, Top Down View 
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Figure 36.   Simulation 5, Time = 1.7 milliseconds, 3-D View 
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Figure 37.   Simulation 5, Time = 1.7 milliseconds, 3-D View 
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Figure 38.   Simulation 6, Initial Particle Distribution, 3-D View 
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Figure 39.   Simulation 6, Initial Particle Distribution, Top Down View 
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Figure 40.   Simulation 6, Time = 0.86 milliseconds, 3-D View 
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Figure 41.   Simulation 6, Time = 0.86 milliseconds, Top Down View 
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Figure 42.   Simulation 6, Time = 1.7 milliseconds, 3-D view 
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Figure 43.   Simulation 6, Time = 1.7 milliseconds, Top Down View 
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Qualitatively, from the above figures, it is apparent that the speed in which the 

particles form chains is a function of the strength of the applied magnetic field.  

Examining the two extreme cases (Simulations 4 and 6) it is clear that the structures are 

much closer to completion in Figure 40 than those in Figure 28 (both are 0.86 

milliseconds into the simulation).  This result is intuitive based on the fact that the 

strength of the dipole force is proportional to the square of the applied magnetic field 

strength (Equations 1 and 3). 

B. DYNAMIC FLUID SIMULATION 

The dynamic fluid simulation is where the real use for the MR model is realized.  

Most MR applications in industry use the MR effect on a moving fluid.  It is desirable for 

the dynamic model to be able to accurately predict the microstructures of the particles in 

the MR fluid and from there predict the apparent viscosity and shear stress of the MR 

fluid.  One theory for predicting the shear stress has already been developed and makes 

its predictions based on the chain density in the MR fluid and the angles the chains make 

in relation to the moving fluid [9].   

A simulation of a MR fluid in shear was run in order to show that these 

measurements could be made in order to test the model against experimental evidence 

and to use the model to help design MR fluid devices.  The simulation results are shown 

below and the following parameters were used. 

 

 
Number 

of 
Particles 

Fluid 
Viscosity 

Fluid 
Permeability 

Particle 
Permeability 

Applied 
Magnetic 

Field 

Velocity of 
Top Plate 

Simulation 7 40 .25 Pa s 1.26E-6 N/A2 .00377 N/A2 250 kA/m 0.1 m/s 

Table 3.   Parameters for Simulation 7 

The following figures show the distribution of particles and their orientation in a 

dynamic flow.  The dimensions for the area were changed in order to create a higher 

particle density without adding more particles to the volume.  In this case the size of the 
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rectangular volume is 50 X 100 X 50 micrometers with the longer direction in the 

direction of the fluid velocity.  The particles were only seeded in the left half of the 

volume to allow the fluid to push the particles to the right without interference from the 

wall.  The magnetic field is applied in the negative z direction.  The value of m D  used to 

calculate the time step has a value of 1.744E-7 as was the case for the above simulations. 
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Figure 44.   Side View of a MR Fluid in Shear 

In the above figure the fluid is flowing from the left to the right based on the shear 

force developed due to the top plate moving to the left at 0.1 m/s.  The angle that the 

chains make with relation to the fluid vary, but could easily be measured and averaged.  

Examining the top down view of the fluid shown below, would allow for the 

determination of the chain density.   
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Figure 45.   Top View of the MR Fluid in Shear 

The dynamic model allows the user to easily input common variable parameters 

in a program in order to determine the dynamic microstructure in two common flow 

conditions (linear flow from shear and parabolic flow from a pressure gradient).  For 

other, more permanent parameters (particle or fluid magnetic permeability, fluid 

viscosity, etc.) individual lines of code which set these parameters must be altered.  For a 

more detailed description of what parameters the user inputs when running the code and 

other parameters directly set in the code see Appendix B. 

The pressure driven, parabolic velocity profile fluid simulation is shown below.  

Unfortunately it is harder to determine the microstructure, in this case than for the shear 

case.  The red line inserted on the below figures shows one chain and how it bulges in the 

middle based on the higher flow velocity there.  The parameters for this simulation are 

exactly the same as those shown in Table 3, except the flow velocity is the centerline 

flow, not the flow at the top wall. 
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Figure 46.   Side View of MR Fluid with Parabolic Flow 
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Figure 47.   Top Down View of MR Fluid with Parabolic Flow 
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VI. CONCLUSION 

The goal of the model developed was for it to be simple, easy to use, require little 

empirical data (based on first principles) and be accurate.  The model satisfies the 

requirement to be simple.  It uses very well understood laws (Newton’s Second Law, 

dipole interaction force, and Stokes’ drag) to describe the forces and accelerations of the 

particles.  Through a mathematical justification it ignores the inertial mass of the particles 

(being dominated by the viscous forces) to simplify the calculations even further.  The 

physical interaction between the particles and the walls was chosen to be in a form that 

would balance out the other dominant forces in a way that was short ranged.  This 

technique is also commonly used in other similar types of models.   

The programs were written in order allow multiple simulations with a minimum 

amount of work.  Instead of the user having to laboriously input every parameter required 

for every simulation the programs only require the user to input a small number of 

parameters that were assumed to be the most varied.  The disadvantage to this approach is 

that the user must modify the code in order to change parameters such as particle or fluid 

magnetic permeability, fluid viscosity, or particle size.  However, it was assumed that 

these parameters would not be changed as frequently as the magnetic field strength, size 

of the volume, or number of particles, so they were not requested by the program for 

every simulation. 

The model used is based entirely on first principles so no empirical data is 

required for the simulation of particles.  This could change if the model requires 

modification in order to accurately predict experimental results.  For instance, in some 

regimes, the Stokes’ approximation may no longer be valid.  In this case the model 

should be modified to more accurately describe the shear and pressure forces on a 

submerged body and this may have to be done with empirical data.  It is the hope and 

belief that this will not be required, but it is a possibility. 

As far as accuracy is concerned the best way to check the model is against 

carefully controlled laboratory experiments.  Qualitatively the model matches observed 
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data such as the chain formation and the time scale in which these structures form 10.  

However, there are several assumptions made that may have to be modified.  The first 

assumption that limits the applicability of the dynamic model is the characterization of the 

velocity profile.  In reality, the formation of particle chains alters the imposed flow.  This is 

how MR fluids are able to withstand a shear and alter the bulk viscosity of the fluid.  The 

model presented does not allow for the changing of the velocity profile.  This is not a simple 

problem to solve, because the only way to determine how the flow changes based on the 

particle formations and how the particle formations vary based on the flow is to numerically 

solve to sets of equations simultaneously.  Either Euler’s equations or the Navier-Stokes’ 

equations must be solved at each time step along with the other equations to determine the 

forces acting on the particles.  This would require the integration of the model for the 

dynamic behavior of the magnetic particles with a numerical solver for fluid dynamic.  The 

location of the particles at each time step would represent a boundary in the flow that would 

be solved with a flow solver.  The model presented here does not attempt to perform any type 

of alteration of the flow based on the particle dynamics.  Therefore, the model is not good for 

long simulation times, but it is still valid in the short term (before the initial velocity of the 

fluid is altered).  In other words, this model accurately describes the initial particle dynamics, 

but is poor in the limit where the initial flow velocity would have been modified by the 

particle structures. 

Another area requiring more detailed study is in the interaction between the particle 

chains and the magnet providing the magnetic field.  As discussed earlier, this interaction is 

well understood in the ER case, but not for the MR.  Models for ER fluid accurately describe, 

based on the interaction with the chains and the electrode, how particle chains will merge to 

form even larger structures around one second after the field is applied.   These larger 

structures are also observed in MR fluids, but the method in which they form is being 

debated.  Since it is doubted that the chains interact with the magnet in the same way that the 

ER fluid’s chains interact with the electrodes, the same process is not occurring.  Some have 

proposed that Brownian motion needs to be included.  While the Brownian motion has much 

smaller interaction energy than magnetism, it is postulated that Brownian interaction could 

cause the chains to bulge and this temporary, minor change in position of the chain could 

allow for nearby chains to attract this chain.  Again, this is a postulation, and more study is 

required for the particle-magnet interaction.  



 49

APPENDIX A. DERIVATIONS OF EQUATION 4, 5, AND 6 

Based on the figure below define rf  as the component of ijf  in the radial 

direction and fθ as the component of ijf  in the angular direction as shown. 

 

Figure 48.   Geometrical Relationship Between Two Particles 

After dropping the subscripts for convenience and decomposing rf  into its 

Cartesian components gives 

 sin( )sin( )y rf f θ φ=  

 sin( ) cos( )x rf f θ φ=  
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 cos( )z rf f θ=  

where fy, fx and fz  are the magnitudes of the components of the force in the y, x and z 

directions respectively.  Similar decompositions of fθ into its Cartesian components 

gives 

 cos( )sin( )yf fθ θ φ=  

 cos( ) cos( )xf fθ θ φ=  

 sin( )zf fθ θ= −  

with the same definitions as above.  Adding the components together gives 

 sin( )sin( ) cos( )sin( )y rf f fθθ φ θ φ= +  

 sin( ) cos( ) cos( ) cos( )x rf f fθθ φ θ φ= +  

 cos( ) sin( )z rf f fθθ θ= − . 

Substituting the definition of fθ and fθ  from equation (3) and the geometric identities  

 
2 2

sin( )
x y

r
θ

+
=  

 
2 2

sin( ) y
x y

φ =
+

 

 cos( ) z
r

θ =  

 
2 2

cos( ) x
x y

φ =
+

 

into the above equation obtains 

2

4 2

51y
Q z yf
r r r
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
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Q z xf
r r r
⎡ ⎤
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⎣ ⎦

 

2

4 2

53z
Q z zf
r r r
⎡ ⎤

= −⎢ ⎥
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with 23 fQ m μ= . 
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APPENDIX B. COMPUTER CODE AND DESCRIPTION 

Below is the computer code for the computation of the static flow problem and a 

description of the various sections. 

 
%Thesis program 
clear all 
a=5*10^-6; %m radius of particle 
Vol=pi*a^3*4/3; %Volume of particle 
mass=7850*Vol; %kg mass of particle 
  
tf=input('Number of time steps   '); 
height=input('Height of volume    (micro meter)'); 
height=height*10^-6; %converts to meters 
length=input('Length of volume    (micro meter)'); 
length=length*10^-6; %converts to meters 
width=input('Width of volume    (micro meter)'); 
width=width*10^-6; 
N=input('Number of particles'); 
H=input('Magnetic Field intensity    (kA/m)'); %~200 kA/m 
H=H*1000; 
  
xinit=length*rand(N,1); %initial x dist of particles 
yinit=width*rand(N,1); %initial y dist of particles 
zinit=height*rand(N,1); %initial z dist of particles 
  
vis=.25; %fluid viscosity [Pa*s] 
uf = 1.257E-6; %permeability of fluid 
up = .00377; %permeability of particle 
m = (4/3)*pi*H*a^3*(up-uf)/(up+2*uf); %magnetic moment 
D=6*pi*vis*a; %Stokes drag force coefficient 
tcheck=mass/D; %intrinsic time scale 
Q = 3*m^2*uf; 
  
ysys = zeros(tf,N); %y position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
xsys = zeros(tf,N); %x position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
zsys = zeros(tf,N); %z position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
delx = zeros(N,N); %difference in the x position between the particles 
dely = zeros(N,N); %difference in the y position between the particles 
delz = zeros(N,N); %difference in the z position between the particles 
r=zeros(N,N); 
Fmx=zeros(N,N);   
Fmy=zeros(N,N); 
Fpx=zeros(N,N); 
Fpy=zeros(N,N); 
Fpz=zeros(N,N); 
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Fmz=zeros(N,N); 
  
ysys(1,:) = yinit'; 
xsys(1,:) = xinit'; 
zsys(1,:) = zinit'; 
  
for t = 1:tf 
    x = xsys(t,:); 
    y = ysys(t,:); 
    z = zsys(t,:); 
    for i=1:N 
        for j=1:N 
            delx(i,j) = x(i)-x(j); 
            dely(i,j) = y(i)-y(j); 
            delz(i,j) = z(i)-z(j); 
            r(i,j) = sqrt(delx(i,j)^2+dely(i,j)^2+delz(i,j)^2); 
            if i==j 
                Fmx(i,j)=0; 
                Fmy(i,j)=0; 
                Fpy(i,j)=0; 
                Fpx(i,j)=0; 
                Fpz(i,j)=0; 
                Fmz(i,j)=0; 
            else 
                Fmx(i,j)=-Q*delx(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in x direction due to magnetic 
force 
                Fpx(i,j)=2*Q/((2*a)^4)*(delx(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in x 
direction due to physical interaction (collision) 
                Fmy(i,j)=-Q*dely(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in y direction due to magnetic 
force 
                Fpy(i,j)=2*Q/((2*a)^4)*(dely(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in y 
direction due to physical interaction (collision) 
                Fmz(i,j)=-Q*delz(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
3); 
                Fpz(i,j)=2*Q/((2*a)^4)*(delz(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); 
                Fx=Fmx+Fpx; %total force in x direction 
                Fy=Fmy+Fpy; %total force in y direction 
                Fz=Fmz+Fpz; %total force in z direction 
            end 
             
        end 
        Ftx=sum(Fx,2); %total force on each particle in x direction 
        Fty=sum(Fy,2); %total force on each particle in y direction  
        Ftz=sum(Fz,2); %total force on each particle in z direction 
    end 
        for q=1:N 
            Ftz(q)=Ftz(q)+2*Q/((2*a)^4)*exp(-30*(z(q)/(2*a)-.5)); 
            Ftz(q)=Ftz(q)-2*Q/((2*a)^4)*exp(-30*((height-z(q))/(2*a)-
.5)); %loop incorperates force due to repulsion of wall 
            Ftx(q)=Ftx(q)+2*Q/((2*a)^4)*exp(-30*(x(q)/(2*a)-.5)); 
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            Ftx(q)=Ftx(q)-2*Q/((2*a)^4)*exp(-30*((length-x(q))/(2*a)-
.5)); 
            Fty(q)=Fty(q)+2*Q/((2*a)^4)*exp(-30*(y(q)/(2*a)-.5)); 
            Fty(q)=Fty(q)-2*Q/((2*a)^4)*exp(-30*((width-y(q))/(2*a)-
.5)); 
        end 
  
    if t<10 
        tau=tcheck/1E7; 
    elseif t<100 
        tau=tcheck/1E4; 
    elseif t<1000 
        tau=tcheck/1E2; 
    else 
        tau=tcheck/10; 
    end 
  
    xsys(t+1,:)=x+Ftx'*tau/D; 
    ysys(t+1,:)=y+Fty'*tau/D; 
    zsys(t+1,:)=z+Ftz'*tau/D; 
     
 plot3(xsys(t+1,:),ysys(t+1,:),zsys(t+1,:),'o','Markersize',25); 
  
 axis ([0,length,0,width,0,height]) 
 pause(.0001) 
end 

 

The first section clears all currently stored variables, sets particle size and 

calculates the mass of the particles. 
%Thesis program 
clear all 
a=5*10^-6; %m radius of particle 
Vol=pi*a^3*4/3; %Volume of particle 
mass=7850*Vol; %kg mass of particle 

 

 The next section is for the user to input the number of time steps, volume 

dimensions, number of particles, and magnetic field strength.  It also converts these 

inputs into the proper units. 
tf=input('Number of time steps   '); 
height=input('Height of volume    (micro meter)'); 
height=height*10^-6; %converts to meters 
length=input('Length of volume    (micro meter)'); 
length=length*10^-6; %converts to meters 
width=input('Width of volume    (micro meter)'); 
width=width*10^-6; 
N=input('Number of particles'); 
H=input('Magnetic Field intensity    (kA/m)'); %~200 kA/m 
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H=H*1000; 

 

 The next section of code randomly decides the initial positions of the 

particles and stores them in the variables shown. 
xinit=length*rand(N,1); %initial x dist of particles 
yinit=width*rand(N,1); %initial y dist of particles 
zinit=height*rand(N,1); %initial z dist of particles 

 

 The next section set some parameters of the MR fluid (magnetic 

permeability of the particle and fluid and fluid viscosity) and computes the magnetic 

dipole moment, Stokes’ drag coefficient, and the intrinsic time scale (to be used in 

determining the actual time scale later in the program). 
vis=.25; %fluid viscosity [Pa*s] 
uf = 1.257E-6; %permeability of fluid 
up = .00377; %permeability of particle 
m = (4/3)*pi*H*a^3*(up-uf)/(up+2*uf); %magnetic moment 
D=6*pi*vis*a; %Stokes drag force coefficient 
tcheck=mass/D; %intrinsic time scale 
Q = 3*m^2*uf; 

 

 The next section preallocates memory for the matrices that will be used to 

either store or compute the motion of the particles.  The matrices xsys, ysys, and zsys will 

store the actual positions of the particles.  The columns refer to the individual particles 

(the first column is the position of particle 1, the second column refers to the position of 

particle 2, etc.) and the rows refer to the time (the first row is the initial distribution, the 

second row is the position of the particles after one time step, etc.).  The matrices delx, 

dely and delx temporarily store the differences in the x, y and z direction between 

particles.  The index of the matrix determines the difference in position of which 

particles.  For example, delx(4,9) is the difference in the x position between particles 4 

and 9.  These matrices get written over after each time step.  The matrix r is similar to 

delx, dely and delz but stores the difference in the radial direction between particles.  The 

matrices Fmx, Fmy, and Fmz store the x, y and z components of the force between two 

particles due to their magnetic dipoles.  For example, Fmy(2,6) is the dipole force in the y 

direction between particles 2 and 6.  Fpx, Fpy, and Fpz are similar to Fmx, Fmy, and Fmz 
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except that the former relate to the physical repulsive force due to the particles being hard 

spheres. 
ysys = zeros(tf,N); %y position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
xsys = zeros(tf,N); %x position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
zsys = zeros(tf,N); %z position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
delx = zeros(N,N); %difference in the x position between the particles 
dely = zeros(N,N); %difference in the y position between the particles 
delz = zeros(N,N); %difference in the z position between the particles 
r=zeros(N,N); 
Fmx=zeros(N,N);   
Fmy=zeros(N,N); 
Fmz=zeros(N,N); 
Fpx=zeros(N,N); 
Fpy=zeros(N,N); 
Fpz=zeros(N,N); 

 

 The next section takes the initial particle distribution and stores this data in 

the first row of the corresponding position matrices. 
ysys(1,:) = yinit'; 
xsys(1,:) = xinit'; 
zsys(1,:) = zinit'; 

 

 The next section is the heart of the program that calculates the dipole and 

physical interaction between particles.  These nested loops calculate first the delx, dely, 

delz and r matrices for the current time step.  Then set the diagonal elements of the force 

matrices to zero (a particle does not interact with itself).  It then uses the equations 

discussed in the thesis to calculate all of the other elements in the force matrices.  
for t = 1:tf 
    x = xsys(t,:); 
    y = ysys(t,:); 
    z = zsys(t,:); 
    for i=1:N 
        for j=1:N 
            delx(i,j) = x(i)-x(j); 
            dely(i,j) = y(i)-y(j); 
            delz(i,j) = z(i)-z(j); 
            r(i,j) = sqrt(delx(i,j)^2+dely(i,j)^2+delz(i,j)^2); 
            if i==j 
                Fmx(i,j)=0; 
                Fmy(i,j)=0; 
                Fpy(i,j)=0; 



 58

                Fpx(i,j)=0; 
                Fpz(i,j)=0; 
                Fmz(i,j)=0; 
            else 
                Fmx(i,j)=-Q*delx(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in x direction due to magnetic 
force 
                Fpx(i,j)=2*Q/((2*a)^4)*(delx(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in x 
direction due to physical interaction (collision) 
                Fmy(i,j)=-Q*dely(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in y direction due to magnetic 
force 
                Fpy(i,j)=2*Q/((2*a)^4)*(dely(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in y 
direction due to physical interaction (collision) 
                Fmz(i,j)=-Q*delz(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
3); 
                Fpz(i,j)=2*Q/((2*a)^4)*(delz(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); 
                Fx=Fmx+Fpx; %total force in x direction 
                Fy=Fmy+Fpy; %total force in y direction 
                Fz=Fmz+Fpz; %total force in z direction 
            end 
             
        end 
        Ftx=sum(Fx,2); %total force on each particle in x direction 
        Fty=sum(Fy,2); %total force on each particle in y direction  
        Ftz=sum(Fz,2); %total force on each particle in z direction 
    end 

 

 The next section incorporates a loop to add the force due to the physical 

interaction with the wall. 
for q=1:N 
         Ftz(q)=Ftz(q)+2*Q/((2*a)^4)*exp(-30*(z(q)/(2*a)-.5)); 
         Ftz(q)=Ftz(q)-2*Q/((2*a)^4)*exp(-30*((height-z(q))/(2*a)-.5)); 
%loop incorperates force due to repulsion of wall 
         Ftx(q)=Ftx(q)+2*Q/((2*a)^4)*exp(-30*(x(q)/(2*a)-.5)); 
         Ftx(q)=Ftx(q)-2*Q/((2*a)^4)*exp(-30*((length-x(q))/(2*a)-.5)); 
         Fty(q)=Fty(q)+2*Q/((2*a)^4)*exp(-30*(y(q)/(2*a)-.5)); 
         Fty(q)=Fty(q)-2*Q/((2*a)^4)*exp(-30*((width-y(q))/(2*a)-.5)); 
 end 

 

 The next section uses the intrinsic time scale to create an actual time scale 

based on the time that the program is simulating.  Extremely small time scales are used 

initially to allow the initial structures to begin forming and then the time scales are 

enlarged as the structures become closer to equilibrium. 
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if t<10 
        tau=tcheck/1E7; 
    elseif t<100 
        tau=tcheck/1E4; 
    elseif t<1000 
        tau=tcheck/1E2; 
    else 
        tau=tcheck/10; 
end 

 

 The final section calculates the new position of every particle, stores it in 

the appropriate matrices and plots the positions on a 3-D graph. 
xsys(t+1,:)=x+Ftx'*tau/D; 

     ysys(t+1,:)=y+Fty'*tau/D; 
     zsys(t+1,:)=z+Ftz'*tau/D; 
     
 plot3(xsys(t+1,:),ysys(t+1,:),zsys(t+1,:),'o','Markersize',25); 
  
 axis ([0,length,0,width,0,height]) 
 pause(.0001) 

 

 Below is the attached code for the shear flow problem.  This code is very 

similar to the static code above, except for a few lines described.  Sentences in red are the 

descriptions of the changes and do not appear in the code. 
%Thesis program 
clear all 
a=5*10^-6; %m radius of particle 
Vol=pi*a^3*4/3; %Volume of particle 
mass=7850*Vol; %kg mass of particle 
  
tf=input('Number of time steps   '); 
height=input('Height of volume    (micro meter)'); 
height=height*10^-6; %converts to meters 
length=input('Length of volume    (micro meter)'); 
length=length*10^-6; %converts to meters 
width=input('Width of volume    (micro meter)'); 
width=width*10^-6; 
U=input('Velocity of top plate     (m/s)'); User inputs the velocity of 
the top plate 
N=input('Number of particles'); 
H=input('Magnetic Field intensity    (kA/m)'); %~200 kA/m 
H=H*1000; 
  
xinit=length*rand(N,1); %initial x dist of particles 
yinit=width*rand(N,1); %initial y dist of particles 
zinit=height*rand(N,1); 
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vis=.25; 
uf = 1.257E-6; %permeability of fluid 
up = .00377; %permeability of particle 
  
m = 4*pi*H*a^3*(up-uf)/(up+2*uf); %magnetic moment, may to modify H 
since local magnetic field may not be applied field (see paper 
micromechanical model for MR fluids) 
D=6*pi*vis*a; %Stokes drag force coefficient 
tcheck=mass/D; %intrinsic time scale 
Q = 3*m^2*uf; 
  
ysys = zeros(tf,N); %y position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
xsys = zeros(tf,N); %x position of particles, column 1 refers to 
particle 1, column 2 refers to particle 2, ect 
zsys = zeros(tf,N); 
delx = zeros(N,N); 
dely = zeros(N,N); 
delz = zeros(N,N); 
r=zeros(N,N); 
  
Fmx=zeros(N,N);   
Fmy=zeros(N,N); 
Fpx=zeros(N,N); 
Fpy=zeros(N,N); 
Fpz=zeros(N,N); 
Fmz=zeros(N,N); 
  
ysys(1,:) = yinit'; 
xsys(1,:) = xinit'; 
zsys(1,:) = zinit'; 
  
for t = 1:tf 
    x = xsys(t,:); 
    y = ysys(t,:); 
    z = zsys(t,:); 
    for i=1:N 
        for j=1:N 
            delx(i,j) = x(i)-x(j); 
            dely(i,j) = y(i)-y(j); 
            delz(i,j) = z(i)-z(j); 
            r(i,j) = sqrt(delx(i,j)^2+dely(i,j)^2+delz(i,j)^2); 
            if i==j 
                Fmx(i,j)=0; 
                Fmy(i,j)=0; 
                Fpy(i,j)=0; 
                Fpx(i,j)=0; 
                Fpz(i,j)=0; 
                Fmz(i,j)=0; 
            else 
                Fmx(i,j)=-Q*delx(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in x direction due to magnetic 
force 
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                Fpx(i,j)=Q/((2*a)^4)*(delx(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in x 
direction due to physical interaction (collision) 
                Fmy(i,j)=-Q*dely(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
1); %force on particle i from particle j in y direction due to magnetic 
force 
                Fpy(i,j)=Q/((2*a)^4)*(dely(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); %force on particle i from particle j in y 
direction due to physical interaction (collision) 
                Fmz(i,j)=-Q*delz(i,j)/r(i,j)^5*(5*(delz(i,j)/r(i,j))^2-
3); 
                Fpz(i,j)=2*Q/((2*a)^4)*(delz(i,j)/(r(i,j)))*exp(-
12*((r(i,j)/(2*a))-1)); 
                Fx=Fmx+Fpx; %total force in x direction 
                Fy=Fmy+Fpy; %total force in y direction 
                Fz=Fmz+Fpz; 
            end 
             
        end 
        Ftx=sum(Fx,2); %total force on each particle in x direction 
        Fty=sum(Fy,2); %total force on each particle in y direction  
        Ftz=sum(Fz,2); %total force on each particle in z direction 
    end 
        for q=1:N 
            if z(q)<1.2*a && z(q)>= a 
                Ftx(q)=0; 
                Fty(q)=0; 
                Ftz(q)=0; 
            else 
            Ftz(q)=Ftz(q)+2*Q/((2*a)^4)*exp(-30*(z(q)/(2*a)-.5)); 
            Ftz(q)=Ftz(q)-2*Q/((2*a)^4)*exp(-30*((height-z(q))/(2*a)-
.5)); %loop incorperates force due to repulsion of wall 
            Ftx(q)=Ftx(q)+2*Q/((2*a)^4)*exp(-30*(x(q)/(2*a)-.5)); 
            Ftx(q)=Ftx(q)-2*Q/((2*a)^4)*exp(-30*((length-x(q))/(2*a)-
.5)); 
            Ftx(q)=Ftx(q)+D*U*(z(q)-a)/height; This line adds the force 
on the particle in the x direction due to the moving fluid.  The force 
is assumed linear (zero at the bottom and maximum at the top). 
            Fty(q)=Fty(q)+2*Q/((2*a)^4)*exp(-30*(y(q)/(2*a)-.5)); 
            Fty(q)=Fty(q)-2*Q/((2*a)^4)*exp(-30*((width-y(q))/(2*a)-
.5)); 
            end 
        end 
  
    if t<10 
        tau=tcheck/1E7; 
    elseif t<100 
        tau=tcheck/1E5; 
    elseif t<1000 
        tau=tcheck/1E3; 
    else 
        tau=tcheck/100; 
     
    end 
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    xsys(t+1,:)=x+Ftx'*tau/D; 
    ysys(t+1,:)=y+Fty'*tau/D; 
    zsys(t+1,:)=z+Ftz'*tau/D; 
     
 plot3(xsys(t+1,:),ysys(t+1,:),zsys(t+1,:),'o','Markersize',25); 
  
 axis ([0,length,0,width,0,height]) 
 pause(.0001) 
end 
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